Optimizing Regions-of-Interest composites for capturing treatment effects on brain amyloid in Alzheimer's Disease clinical trials

Volha Tryputsen, Janssen Research & Development

FDA-Industry Statistics Workshop 24th September, 2014 Washington DC

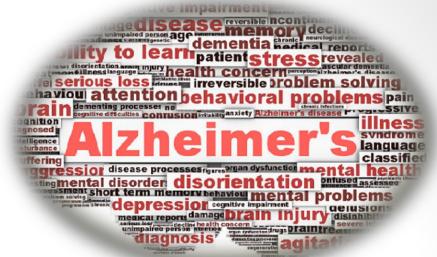
Contributors

Volha Tryputsen
Allitia DiBernardo
Mahesh Samtani
Gerald Novak
Vaibhav Narayan
Nandini Raghavan

Alzheimer's Disease Neuroimaging Initiative

Outline

- 1. Background
- 2. PiB PET SUVR for capturing disease progression
- 3. Regions-of-Interest composite optimization



Part 1

BACKGROUND

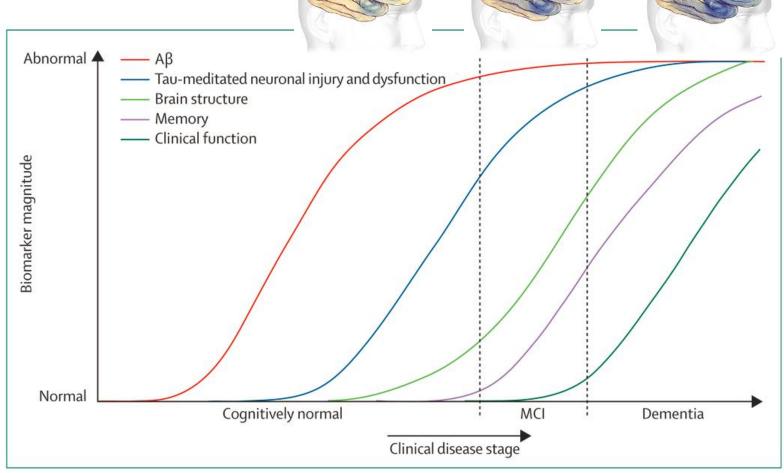
Alzheimer`s Disease


- Definition: Alzheimer's disease is a **progressive** disease that destroys memory and other important mental functions, intellectual and social skills.
- Current state: Drug after drug has failed to effectively treat AD so far. Currently **there is no cure for AD**. Drugs that are offered to AD patients focus on symptoms, but they do not stop or reverse the disease.

Alzheimer's Disease Hypothesis

Amyloid hypothesis

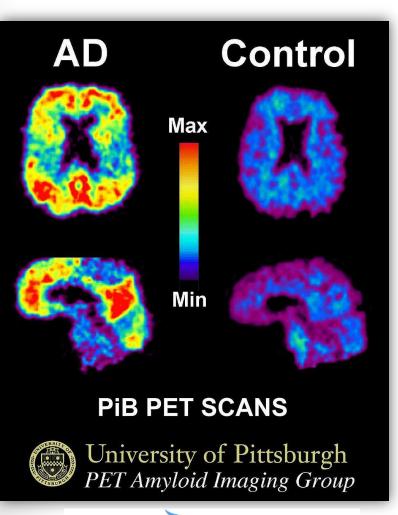
beta-amyloid (A_B) deposits are the fundamental cause of the disease



7

Dynamic biomarkers of the Alzheimer's

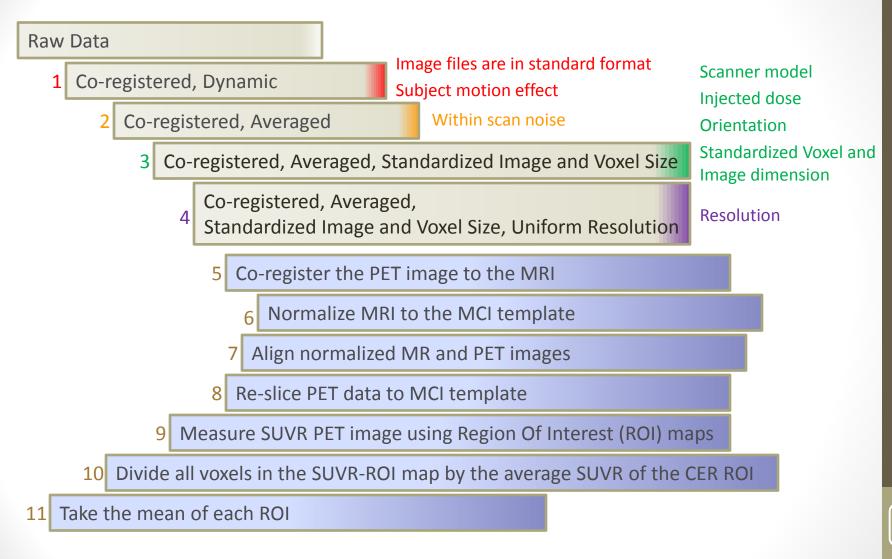
pathological cascade



Part 2

PIB PET SUVR FOR CAPTURING DISEASE PROGRESSION

PiB PET Imaging


Amyloid-β in the brain can be visualized in vivo using molecular imaging technology, such as PET scan

Pittsburgh compound B (PiB) was the first radiotracer capable of highlighting deposits of β amyloid in the brain

The PET scans measure the uptake of the PiB radiotracer that targets beta-amyloid

ADNI PiB PET data preprocessing

Standardized Uptake Value Ratio

Good numerator

- Maximum separation and low variability across categories of interest (e.g. diagnostic categories)
- Large shift from zero and low variability within category of interest

$$SUVR = \frac{SUVR_{Region\ Of\ Interest}}{SUVR_{Reference\ Region}}$$

Good denominator

- Minimum/no amyloid binding for all subjects regardless of the disease status
- Low variability, compared to other regions
- Low within subject variability (no change over time for each individual)

Standardized Uptake Value Ratio for capturing disease progression

- Composite measure consisting of a several Regions of Interest with the ability to capture amyloid accumulation, therefore disease progression
- Optimal Reference Region with minimal amyloid accumulation and low variability
- High Mean/SD of change in amyloid accumulation over time ratio

Part 3

REGIONS-OF-INTEREST COMPOSITE OPTIMIZATION

PiB PET data available

for analysis

Table 1: Regional data

ROI Abbreviatio			
Anterior cingulate	ACG		
Anterior ventral striatum	AVS		
Cerebellum	CER		
Frontal cortex	FRC		
Lateral temporal cortex	LTC		
Mesial temporal cortex	MTC		
Occipital cortex	OCC		
Occipital pole	ОСР		
Parietal cortex	PAR		
Precuneus cortex	PRC		
Pons	PON		
Sensory motor cortex	SMC		
Sub-cortical white matter	SWM		
Thalamus	THL		

Table 2a: Number of subjects in each cohort observed at each time point

Visit, years	Alzheimer`s Disease	Mild Cognitively Impaired	Cognitively Normal	Total
base line	19	65	19	103
Year 1	13	50	17	80
Year 2	2	26	11	39

Table 2b: Number of subjects in each cohort observed at each time point (with modified baseline)

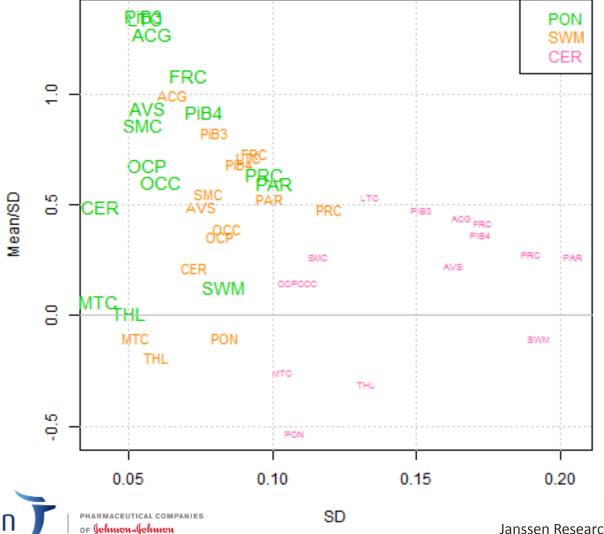
Visit, years	Alzheimer`s Disease	Mild Cognitively Impaired	Cognitively Normal	Total
base line	25	56	22	103
Year 1	16	44	20	80
Year 2	2	25	12	39

PiB PET data considerations

Population:

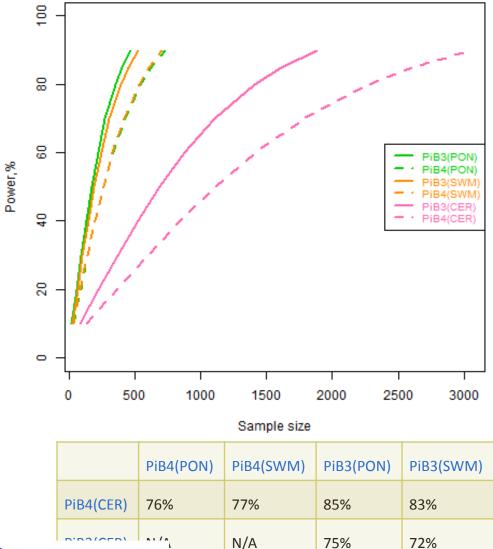
- Only PiB-positive subjects (1.5 SUVR cut-off), mostly comprised of MCI (70%)
- Only 2-year completers (N=20)

Reference region:


- Has been used CER
- We evaluated two alternative regions, proposed in the literature – PON and SWM

Composite SUVR:

- Has been used PiB4 (ACG, FRC, PAR, PRC)
- A novel composite was developed PiB3(ACG, FRC, LTC)



Standardized mean 2-year change from baseline versus SD of 2-year change from baseline in PiB-positive completers

September 23, 2014

Sample size reduction for improved reference region and composite - PiB3(PON)

Summary

Reference region:

- The data suggest that CER may degrade the signal because it accumulates amyloid
- **PON** and **SWM** alternative RRs produce significant sample size reduction (>70%), compared to CER

SUVR composite:

 Novel SUVR composite PiB3 appeared to be more sensitive to change in amyloid than PiB4, exhibiting further sample size reduction with additional 10% savings

Future consideration:

Define optimal weights for regions in the composite

References:

Manuscript "Optimizing Regions-of-Interest Composites for Capturing Treatment Effects on Brain Amyloid in Clinical Trials" by Tryputsen et al. has been accepted for publication in Journal of Alzheimer's Disease (2014)

Optimizing Regions-of-Interest Composites for Capturing Treatment Effects on Brain Amyloid in Clinical Trials

Volha Tryputsen*, Allitia DiBernardo, Mahesh Samtani, Gerald P. Novak, Vaibhav A. Narayan, Nandini Raghavan and the Alzheimer's Disease Neuroimaging Initiative Janssen Research & Development LLC, Pharmaceutical Companies of Johnson & Johnson, USA

Handling Associate Editor: Tim Schultz

Accepted 28 June 2014

DOI 10.3233/JAD-131979

Abstrac

Background: Pittsburgh Compound B (PiB) positron emission tomography (PET) neuroimaging is a powerful research tool to characterize amyloid evolution in the brain. Quantification of amyloid load critically depends on (i) the choice of a reference region (RR) and (ii) on the selection of regions of interest (ROIs) to derive the standard uptake value ratios (SUVRs).

Objective: To evaluate the stability, i.e., negligible amyloid accumulation over time, of different RRs, and the performance of different PiB summary measures defined by selected ROIs and RRs for their sensitivity to detecting longitudinal change in amyloid burden.

Methods: To evaluate RRs, cross-sectional and longitudinal analyses of focal regional and composite measures of amyloid accumulation were carried out on the standardized PiB-PET regional data for cerebellar grey matter (CER), subcortical white matter (SWM), and pons (PON). RRs and candidate composite SUVR measures were further evaluated to select regions and develop novel composites, using standardized 2-year change from baseline.

Results: Longitudinal trajectories of PiB4—average of anterior cingulate (ACG), frontal cortex (FRC), parietal cortex, and precuneus—demonstrated marked variability and small change from baseline when normalized to CER, larger changes and less variability when normalized to SWM, which was further enhanced for the composite in PON-normalized settings. Novel composite PiB3, comprised of the average SUVRs of lateral temporal cortex, ACG, and FRC was created.

Conclusion: PON and SWM appeared to be more stable RRs than the CER. PiB3 showed compelling sample size reduction and gains in power calculations for clinical trials over conventional PiB4 composite.

Keywords: Alzheimer's disease, amyloid imaging, brain, pons, 11C-PiB

Thank you!

Volha Tryputsen vtryput@its.jnj.com